Dietary Soy Protein Isolate Attenuates Intestinal Immunoglobulin and Mucin Expression in Young Mice Compared with Casein

与酪蛋白相比,食用大豆分离蛋白可减弱幼鼠肠道免疫球蛋白和粘蛋白的表达

阅读:4
作者:Bin Zeng, Dongyang Wang, Hailong Wang, Ting Chen, Junyi Luo, Qianyun Xi, Jiajie Sun, Yongliang Zhang

Abstract

Dietary protein sources have profound effects on children and young animals, and are important for the gut barrier function and immune resilience. Milk and soy are the main sources of protein for children and young animals after weaning. The objective of this study was to compare the effects of dairy and soy proteins on the intestinal barrier in early development. Weanling C57BL/6 mice were fed AIN-93G diets prepared with casein or soy protein isolate (SPI) for 21 days. Compared with those fed with the casein diet, mice fed with the SPI diet did not change their body weight and organ coefficients, but increased their feed intake and ratio of feed to gain. SPI lowered the level of luminal secretory immunoglobulin A (SIgA) and downregulated the levels of IL-4, IL-13, polymeric immunoglobulin receptor (Pigr), Janus kinase 1 (Jak1), signal transducer and activator of transcription 6 (Stat6), and transforming growth factor-β (Tgfb) in the mouse ileum. Western blotting of ileal proteins confirmed that SPI suppressed the activation of the JAK1/STAT6 signaling pathway. Furthermore, SPI attenuated intestinal mucin production, as demonstrated by the decreased numbers of intestinal goblet cells and the reduced relative expression levels of mucin 1 (Muc1), mucin 2 (Muc2), trefoil factor 3 (Tff3), glucose-regulated protein 94 (Grp94), and anterior gradient homolog 2 (Agr2). The results indicated that the SPI diet could attenuate mouse intestinal immunity, as demonstrated by decreased SIgA and mucin production in the intestine. Therefore, we suggest that our findings should be of consideration when SPI or casein are used as dietary protein sources.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。