Inhibition of SRPK1, a key splicing regulator, exhibits antitumor and chemotherapeutic-sensitizing effects on extranodal NK/T-cell lymphoma cells

抑制关键剪接调节因子 SRPK1 对结外 NK/T 细胞淋巴瘤细胞表现出抗肿瘤和化疗增敏作用

阅读:4
作者:Cuiying He #, Beichen Liu #, Huan-You Wang, Lili Wu, Guimin Zhao, Chen Huang, Yueping Liu, Baoen Shan, Lihong Liu

Background

Increasing evidence has convincingly shown that abnormal pre-mRNA splicing is implicated in the development of most human malignancies. Serine/arginine-rich protein kinase 1 (SRPK1), a key splicing regulator, is reported to be overexpressed in leukemia and other cancer types, which suggests the therapeutic potential of targeting SRPK1.

Conclusion

In summary, these results support that SRPK1 might be a useful clinical prognostic indicator and therapeutic target for ENKTL, especially for patients who relapse after cisplatin-based chemotherapies.

Methods

SRPK1 expression was measured in 41 ENKTL patients by immunohistochemistry and mRNA expression was analyzed by qRT‒PCR. We knocked down SRPK1 expression in the ENKTL cell line YT by siRNA transfection and inhibited SRPK1 using inhibitors (SPHINX31 and SRPIN340) in YT cells and peripheral blood lymphocytes (PBLs) isolated from ENKTL patients to investigate its role in cell proliferation and apoptosis. Then, RNA-seq analysis was performed to predict the potential signaling pathway by which SRPK1 inhibition induces cell death and further verified this prediction by Western blotting.

Results

In the present study, we initially evaluated the clinical significance of SRPK1 in extranodal natural killer/T-cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin lymphoma. The expression of SRPK1 in ENKLT patients was examined by immunohistochemistry and qRT‒PCR, which revealed SRPK1 overexpression in more than 60% of ENKTL specimens and its association with worse survival. Cellular experiments using the human ENKTL cell line YT and PBLs from ENKTL patients, demonstrated that inhibition of SRPK1 suppressed cell proliferation and induced apoptosis. Subsequently, we investigated the downstream targets of SRPK1 by RNA-seq analysis and found that SRPK1 inhibition induced ATF4/CHOP pathway activation and AKT1 inhibition. Furthermore, ENKTL patients presenting high SRPK1 expression showed resistance to cisplatin-based chemotherapy. The association of SRPK1 expression with cisplatin resistance was also confirmed in YT cells. SRPK1 overexpression via pLVX-SRPK1 plasmid transfection dramatically decreased the sensitivity of YT cells to cisplatin, while siRNA-mediated SRPK1 knockdown or SRPK1 inhibitor treatment significantly increased cisplatin cytotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。