Vitamin D attenuated 6-OHDA-induced behavioural deficits, dopamine dysmetabolism, oxidative stress, and neuro-inflammation in mice

维生素 D 减轻了小鼠 6-OHDA 引起的行为缺陷、多巴胺代谢异常、氧化应激和神经炎症

阅读:6
作者:Adedamola Bayo-Olugbami, Abdulrazaq Bidemi Nafiu, Abdulbasit Amin, Olalekan Michael Ogundele, Charles C Lee, Bamidele Victor Owoyele

Background

L-DOPA, the predominant therapy for Parkinson's disease (PD) is associated with motor deficits after prolonged use. The nigrostriatal tract, a primary target of neurodegeneration in PD, contains abundant Vitamin-D receptors, suggesting a potential role for VD in the disease. Therefore, we tested the impact of Vitamin D3 (VD3) in a mouse model of PD.

Conclusion

VD3 reversed some of the 6-OHDA induced changes in proteins involved in modulating the dopamine system, behavioural deficits and oxidative stress biomarkers. The data suggests that VD3 might be beneficial in reducing L-DOPA dosage, thereby reducing problems associated with dosage and prolonged use of L-DOPA in PD management.

Methods

PD was induced in adult male C57BL6 mice by a single intrastriatal injection of 6-hydroxydopamine. Two weeks post lesion, these mice received injections of a vehicle, VD3, L-DOPA, or a combination of VD3/L-DOPA and compared with sham controls. Treatment lasted three weeks, during which motor-cognitive neurobehaviour was assessed. Five weeks post lesion, brains were collected and striatal levels of the following proteins assessed: tyrosine hydroxylase (TH), dopamine decarboxylase (DDC), monoamine oxidase (MAO-B), Catechol-O-methyl transferase (COMT), dopamine transporter (DAT), brain-derived neurotrophic factor (BDNF), microglia marker (CD11b), inflammation (IL-1β), apoptotic signaling (BAX) and oxidative stress (p47phox).

Results

Treatment with VD3 attenuated behavioural deficits induced by 6-OHDA, protein associated with dopamine metabolism and biomarkers of oxidative stress. VD3 significantly increased contralateral wall touches, exploratory motor and cognitive activities. VD3 significantly enhanced the expression of TH, DAT, BDNF, while significantly reducing expression of MAO-B, CD11b, IL-I β and p47phox.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。