Autophagy impairment by caspase-1-dependent inflammation mediates memory loss in response to β-Amyloid peptide accumulation

caspase-1 依赖性炎症导致的自噬损伤可介导因 β-淀粉样肽积累而导致的记忆丧失

阅读:7
作者:Lourdes Álvarez-Arellano, Martha Pedraza-Escalona, Tonali Blanco-Ayala, Nohemí Camacho-Concha, Javier Cortés-Mendoza, Leonor Pérez-Martínez, Gustavo Pedraza-Alva

Abstract

β-Amyloid peptide accumulation in the cortex and in the hippocampus results in neurodegeneration and memory loss. Recently, it became evident that the inflammatory response triggered by β-Amyloid peptides promotes neuronal cell death and degeneration. In addition to inflammation, β-Amyloid peptides also induce alterations in neuronal autophagy, eventually leading to neuronal cell death. Thus, here we evaluated whether the inflammatory response induced by the β-Amyloid peptides impairs memory via disrupting the autophagic flux. We show that male mice overexpressing β-Amyloid peptides (5XFAD) but lacking caspase-1, presented reduced β-Amyloid plaques in the cortex and in the hippocampus; restored brain autophagic flux and improved learning and memory capacity. At the molecular level, inhibition of the inflammatory response in the 5XFAD mice restored LC3-II levels and prevented the accumulation of oligomeric p62 and ubiquitylated proteins. Furthermore, caspase-1 deficiency reinstates activation of the AMPK/Raptor pathway while down-regulating AKT/mTOR pathway. Consistent with this, we found an inverse correlation between the increase of autophagolysosomes in the cortex of 5XFAD mice lacking caspase-1 and the presence of mitochondria with altered morphology. Together our results indicate that β-Amyloid peptide-induced caspase-1 activation, disrupts autophagy in the cortex and in the hippocampus resulting in neurodegeneration and memory loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。