MiR-143-5p Deficiency Triggers EMT and Metastasis by Targeting HIF-1α in Gallbladder Cancer

MiR-143-5p 缺乏可靶向胆囊癌中的 HIF-1α 引发 EMT 和转移

阅读:4
作者:Min He, Ming Zhan, Wei Chen, Sunwang Xu, Manmei Long, Hui Shen, Yongheng Shi, Qiang Liu, Man Mohan, Jian Wang

Aims

Early metastasis plays a pivotal role in tumor-caused death in gallbladder cancer (GBC) patients. Increasing evidence suggest that miR-143-5p is an active player involved in cancer metastasis and a potential therapeutic target. However, its role in the development of GBC cells remains unclear. The aim of this study is to reveal the inhibiting effects of miR-143-5p on the proliferation and metastasis in GBC.

Background/aims

Early metastasis plays a pivotal role in tumor-caused death in gallbladder cancer (GBC) patients. Increasing evidence suggest that miR-143-5p is an active player involved in cancer metastasis and a potential therapeutic target. However, its role in the development of GBC cells remains unclear. The aim of this study is to reveal the inhibiting effects of miR-143-5p on the proliferation and metastasis in GBC.

Conclusions

Altogether, our studies identified a novel regulator, miR-143-5p, implicated in GBC prognosis through targeting HIF-1α/EMT related signaling pathway, which could serve as a biomarker and therapeutic target for GBC.

Methods

Quantitative real-time PCR were used to investigate miR-143-5p and its target HIF-1α mRNA levels. Protein expression was measured by immunohistochemistry and western blot. The function and regulation mechanism of miR-143-5p was confirmed by MTS, colony formation, wound healing, transwell, and luciferase reporter assays.

Results

miR-143-5p was first found significantly reduced in GBC tissues compared with corresponding noncancerous gallbladder tissues. In addition, miR-143-5p deficiency correlated well with larger tumor size, advanced TNM stage, and poorer survival rate. In vitro, miR-143-5p addition dramatically suppressed GBC cells proliferation, migration and invasion, whereas miR-143-5p antisense led the opposite effects. Further elucidating the molecular mechanism inside, we found miR-143-5p exerted its inhibitory function through downregulating the expression of HIF-1α, which further reduced Twist1 and impeded epithelial-mesenchymal transition (EMT). Conclusions: Altogether, our studies identified a novel regulator, miR-143-5p, implicated in GBC prognosis through targeting HIF-1α/EMT related signaling pathway, which could serve as a biomarker and therapeutic target for GBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。