Tyrosine kinase receptor ErbB4 in Advillin-positive neurons contributes to inflammatory pain hypersensitivity in mouse DRG

Advillin 阳性神经元中的酪氨酸激酶受体 ErbB4 导致小鼠 DRG 中的炎症性疼痛过敏

阅读:6
作者:Zhongxin Guo, Qingyun Huang, Wei Zhang, Kaiyue Shi, Jie Yuan, Shuya Qi, Bingyan Wang, Kuotao Li, Shuntang Li, Jiangu Gong, Xuechao Jing, Yuanyuan Liu, Guohe Tan

Abstract

Inflammatory pain is a common type of pathological pain. Although the dorsal root ganglion (DRG) is key to pathogenesis of inflammatory pain, the underlying specific molecular and cellular mechanisms remain unclear. In this study, we used mouse models of acute or chronic inflammatory pain, induced by formalin or complete Freund' s adjuvant (CFA), respectively, to explore whether tyrosine kinase receptor ErbB4 participates in the pathogenesis of inflammatory pain. Firstly, we found that both the expression of Neuregulin 1 (Nrg1) and phosphorylation of ErbB4 receptor were upregulated in DRG after inflammatory pain, implying the activation of ErbB4 in DRG. Using ErbB4-mutant mice, we found reduced pain sensitivity of mice when ErbB4 gene expression was largely ablated; furthermore, ErbB4 deletion decreased the inflammatory pain hypersensitivity of either formalin- or CFA-induced mouse models. Moreover, the pain sensitivity was reduced in mice with specific deletion of ErbB4 on advillin-positive neurons within DRG. Importantly, pain hypersensitivity also decreased in Advillin-Cre;ErbB4-/- cKO mice after formalin- or CFA-induced inflammatory pain. Finally, gene quantification differential expression analysis, using RNAseq technology in combination with GO and KEGG enrichment analysis, suggested that calcium signaling pathway possibly mediated the roles of ErbB4 on DRG sensory neurons in inflammatory pain models. Together, these results indicate that ErbB4 on advillin-positive sensory neurons enhances inflammatory pain sensitivity, providing new clues towards the pathogenic mechanisms of inflammatory pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。