β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways

β-catenin通过调节PTEN通路调控小鼠异位心脏移植后心肌缺血/再灌注损伤

阅读:4
作者:Qian Ban, Li Qiao, Haidong Xia, Baiyi Xie, Justin Liu, Yunhan Ma, Liyi Zhang, Meng Zhang, Leyna G Liu, Wenqiao Jiao, Shuting Yang, Zongye Li, Songguo Zheng, Dahai Liu, Junjie Xia, Zhongquan Qi

Abstract

Ischemia reperfusion (I/R) injury, an inevitable event accompanying heart transplantation, is the primary factor leading to organ failure and graft rejection. In order to prevent I/R injury, we established murine heart transplantation model with I/R and cell culture system to determine whether β-catenin is a mediate factor in preventing I/R injury in heart transplantation. After successfully established heterotopic heart transplantation mice model, the I/R injury was induced, and two dynamic temporal were studied during different I/R phases. With the increase of ischemia and reperfusion time, heart damage was more severe. In the initial study, we observed that β-catenin was significantly decreased, while ROCK1 and PTEN increased during the perfusion phase from day 0 to day 1, and remain the same level until 3 days later. The similar pattern that β-catenin was down-regulated while ROCK1 and PTEN were up-regulated was also observed in the dynamic temporal ischemia study. To further investigate the role of β-catenin signaling in I/R injury in vitro, β-catenin over-expressing plasmid was transfected into HL-1 cells, a cardiac cell line. We noted that β-catenin over-expressing cardiomyocytes showed decreased ROCK1/PTEN expression both at mRNA and protein levels. In addition, cobalt dichloride (CoCl2) -induced oxidative stress model was further established to mimic cardiac I/R injury. We observed that CoCl2-induced activation of ROCK1/PTEN signaling pathway were attenuated by transient transfection of a β-catenin over-expressing plasmid. Taken together, our results suggest that cardiac transplant induced IR injury is closely associated with the down-regulation of β-catenin and up-regulation of ROCK1 and PTEN expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。