XAV-939 inhibits epithelial-mesenchymal transformation in pulmonary fibrosis induced by crystalline silica via the Wnt signaling pathway

XAV-939 通过 Wnt 信号通路抑制结晶二氧化硅诱导的肺纤维化中的上皮-间质转化

阅读:10
作者:Zhihao Lv, Hao Xu, Xuezhe Si, Shushuo Xu, Xinxiao Li, Ning Li, Qiang Zhou, Meiyu Chang, Sanqiao Yao, Haibin Li

Abstract

Silicosis is an occupational lung disease that results from long-term inhalation of free silica dust, the expression is sustained inflammation response, fibroblast hyperplasia, and excessive collagen deposit, bringing about pulmonary interstitial fibrosis. Wnt signaling pathway exists in various kinds of eukaryotic cells, is a highly conservative signaling pathway in biological evolution, and participates in cell proliferation, differentiation, migration, and polarity of physiological activity, such as in embryonic development, organ morphology, and tumor. In addition, it plays an important role in the progress of fibrosis disease. At present, studies related to silicosis are increasing, but the pathogenesis of silicosis still is not clear. In recent years, more and more studies have suggested that the Wnt signaling pathway could participate in the pathogenesis of silicosis fibrosis. In the study, we explored the mechanism of the Wnt signaling pathway in the pathogenesis of silicosis fibrosis and evaluated the effect of XAV-939 treatment epithelial-mesenchymal transformation (EMT) induced by silica. In addition, the results showed that EMT and activation of the Wnt signaling pathway would occur after stimulation of silica or TGF-β1. However, after treatment with the Wnt signaling pathway inhibitor XAV-939, EMT was reversed and the expression of the β-catenin decreased. These results suggested that the Wnt signaling pathway is associated with EMT induced by silica and it could be a potential target for the treatment of silicosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。