Sensory experience remodels genome architecture in neural circuit to drive motor learning

感官体验重塑神经回路中的基因组结构以驱动运动学习

阅读:5
作者:Tomoko Yamada #, Yue Yang #, Pamela Valnegri #, Ivan Juric, Armen Abnousi, Kelly H Markwalter, Arden N Guthrie, Abigail Godec, Anna Oldenborg, Ming Hu, Timothy E Holy, Azad Bonni

Abstract

Neuronal-activity-dependent transcription couples sensory experience to adaptive responses of the brain including learning and memory. Mechanisms of activity-dependent gene expression including alterations of the epigenome have been characterized1-8. However, the fundamental question of whether sensory experience remodels chromatin architecture in the adult brain in vivo to induce neural code transformations and learning and memory remains to be addressed. Here we use in vivo calcium imaging, optogenetics and pharmacological approaches to show that granule neuron activation in the anterior dorsal cerebellar vermis has a crucial role in a delay tactile startle learning paradigm in mice. Of note, using large-scale transcriptome and chromatin profiling, we show that activation of the motor-learning-linked granule neuron circuit reorganizes neuronal chromatin including through long-distance enhancer-promoter and transcriptionally active compartment interactions to orchestrate distinct granule neuron gene expression modules. Conditional CRISPR knockout of the chromatin architecture regulator cohesin in anterior dorsal cerebellar vermis granule neurons in adult mice disrupts enhancer-promoter interactions, activity-dependent transcription and motor learning. These findings define how sensory experience patterns chromatin architecture and neural circuit coding in the brain to drive motor learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。