Characterization of four subtypes in morphologically normal tissue excised proximal and distal to breast cancer

乳腺癌近端和远端切除的形态正常组织中四种亚型的特征

阅读:5
作者:Emanuela Gadaleta, Pauline Fourgoux, Stefano Pirró, Graeme J Thorn, Rachel Nelan, Alastair Ironside, Vinothini Rajeeve, Pedro R Cutillas, Anna E Lobley, Jun Wang, Esteban Gea, Helen Ross-Adams, Conrad Bessant, Nicholas R Lemoine, Louise J Jones #, Claude Chelala #

Abstract

Widespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence after surgery despite apparently tumor-free margins. This suggests that morphologically normal breast may harbor early alterations that contribute to increased risk of cancer recurrence. We conducted a comprehensive transcriptomic and proteomic analysis to characterize 57 fresh-frozen tissues from breast cancers and matched histologically normal tissues resected proximal to (<2 cm) and distant from (5-10 cm) the primary tumor, using tissues from cosmetic reduction mammoplasties as baseline. Four distinct transcriptomic subtypes are identified within matched normal tissues: metabolic; immune; matrisome/epithelial-mesenchymal transition, and non-coding enriched. Key components of the subtypes are supported by proteomic and tissue composition analyses. We find that the metabolic subtype is associated with poor prognosis (p < 0.001, HR6.1). Examination of genes representing the metabolic signature identifies several genes able to prognosticate outcome from histologically normal tissues. A subset of these have been reported for their predictive ability in cancer but, to the best of our knowledge, these have not been reported altered in matched normal tissues. This study takes an important first step toward characterizing matched normal tissues resected at pre-defined margins from the primary tumor. Unlocking the predictive potential of unexcised tissue could prove key to driving the realization of personalized medicine for breast cancer patients, allowing for more biologically-driven analyses of tissue margins than morphology alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。