Intrinsic renal cell and leukocyte-derived TLR4 aggravate experimental anti-MPO glomerulonephritis

内在肾细胞和白细胞衍生的 TLR4 加重实验性抗 MPO 肾小球肾炎

阅读:7
作者:Shaun A Summers, Betty S van der Veen, Kim M O'Sullivan, Poh-Yi Gan, Joshua D Ooi, Peter Heeringa, Simon C Satchell, Peter W Mathieson, Moin A Saleem, Kumar Visvanathan, Stephen R Holdsworth, A Richard Kitching

Abstract

Antimyeloperoxidase antibodies can cause crescentic glomerulonephritis and pulmonary hemorrhage. Toll-like receptors (TLRs) respond to infectious agents activating host defenses, whereas infections potentially initiate disease and provoke relapses. Neutrophils were found to be key effector cells of injury in experimental models, as disease does not occur in their absence and injury is enhanced by lipopolysaccharide (LPS). In this study, highly purified LPS (a pure TLR4 ligand) acted with antimyeloperoxidase antibodies to synergistically increase kidney and lung neutrophil recruitment and functional injury; effects abrogated in TLR4-deficient mice. Increased kidney TLR4 expression after stimulation predominantly occurred in glomerular endothelial cells. Enhanced glomerular neutrophil recruitment correlated with increased kidney mRNA expression of CXCL1 and CXCL2 (homologs of human CXCL8), whereas their preemptive neutralization decreased neutrophil recruitment. Disease induction in bone marrow chimeric mice showed that TLR4 in both bone marrow and renal parenchymal cells is required for maximal neutrophil recruitment and glomerular injury. Further studies in human glomerular cell lines stimulated with LPS found that glomerular endothelial cells were the prominent sources of CXCL8. Thus, our results define a role for TLR4 expression in bone marrow-derived and glomerular endothelial cells in neutrophil recruitment and subsequent functional and histological renal injury in experimental antimyeloperoxidase glomerulonephritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。