Defects in Efflux (oprM), β-Lactamase (ampC), and Lipopolysaccharide Transport (lptE) Genes Mediate Antibiotic Hypersusceptibility of Pseudomonas aeruginosa Strain Z61

外排基因 (oprM)、β-内酰胺酶基因 (ampC) 和脂多糖转运基因 (lptE) 缺陷导致铜绿假单胞菌 Z61 菌株出现抗生素高敏感性

阅读:7
作者:Xiaoyu Shen, Nicole V Johnson, Naomi N K Kreamer, S Whitney Barnes, John R Walker, Angela L Woods, David A Six, C R Dean

Abstract

Antibiotic hypersensitive bacterial mutants (e.g., Escherichia coliimp) are used to investigate intrinsic resistance and are exploited in antibacterial discovery to track weak antibacterial activity of novel inhibitor compounds. Pseudomonas aeruginosa Z61 is one such drug-hypersusceptible strain generated by chemical mutagenesis, although the genetic basis for hypersusceptibility is not fully understood. Genome sequencing of Z61 revealed nonsynonymous single-nucleotide polymorphisms in 153 genes relative to its parent strain, and three candidate mutations (in oprM, ampC, and lptE) predicted to mediate hypersusceptibility were characterized. The contribution of these mutations was confirmed by genomic restoration of the wild-type sequences, individually or in combination, in the Z61 background. Introduction of the lptE mutation or genetic inactivation of oprM and ampC genes alone or together in the parent strain recapitulated drug sensitivities. This showed that disruption of oprM (which encodes a major outer membrane efflux pump channel) increased susceptibility to pump substrate antibiotics, that inactivation of the inducible β-lactamase gene ampC contributed to β-lactam susceptibility, and that mutation of the lipopolysaccharide transporter gene lptE strongly altered the outer membrane permeability barrier, causing susceptibility to large antibiotics such as rifampin and also to β-lactams.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。