Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis

内质网 Ca2+ 耗竭激活 XBP1 并控制角质形成细胞和表皮的终末分化

阅读:4
作者:A Celli, D S Mackenzie, D S Crumrine, C L Tu, M Hupe, D D Bikle, P M Elias, T M Mauro

Background

Endoplasmic reticulum (ER) Ca(2+) depletion, previously shown to signal pathological stress responses, has more recently been found also to trigger homeostatic physiological processes such as differentiation. In keratinocytes and epidermis, terminal differentiation and barrier repair require physiological apoptosis and differentiation, as evidenced by protein synthesis, caspase 14 expression, lipid secretion and stratum corneum (SC) formation. Objectives: To investigate the role of Ca(2+) depletion-induced ER stress in keratinocyte differentiation and barrier repair in vivo and in cell culture.

Conclusions

This report is the first to quantify and localize ER Ca(2+) loss after barrier perturbation and show that homeostatic processes that restore barrier function in vivo can be reproduced solely by releasing ER Ca(2+), via induction of physiological ER stress.

Methods

The SERCA2 Ca(2+) pump inhibitor thapsigargin (TG) was used to deplete ER calcium both in cultured keratinocytes and in mice. Levels of the ER stress factor XBP1, loricrin, caspase 14, lipid synthesis and intracellular Ca(2+) were compared after both TG treatment and barrier abrogation.

Results

We showed that these components of terminal differentiation and barrier repair were signalled by physiological ER stress, via release of stratum granulosum (SG) ER Ca(2+) stores. We first found that keratinocyte and epidermal ER Ca(2+) depletion activated the ER-stress-induced transcription factor XBP1. Next, we demonstrated that external barrier perturbation resulted in both intracellular Ca(2+) emptying and XBP1 activation. Finally, we showed that TG treatment of intact skin did not perturb the permeability barrier, yet stimulated and mimicked the physiological processes of barrier recovery. Conclusions: This report is the first to quantify and localize ER Ca(2+) loss after barrier perturbation and show that homeostatic processes that restore barrier function in vivo can be reproduced solely by releasing ER Ca(2+), via induction of physiological ER stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。