The Role of Microorganisms and Carbon-to-Nitrogen Ratios for Microbial Protein Production from Bioethanol

微生物和碳氮比在生物乙醇生产微生物蛋白质中的作用

阅读:6
作者:L Van Peteghem, M Sakarika, S Matassa, K Rabaey

Abstract

With industrial agriculture increasingly challenging our ecological limits, alternative food production routes such as microbial protein (MP) production are receiving renewed interest. Among the multiple substrates so far evaluated for MP production, renewable bioethanol (EtOH) is still underexplored. Therefore, the present study investigated the cultivation of five microorganisms (2 bacteria, 3 yeasts) under carbon (C), nitrogen (N), and dual C-N-limiting conditions (molar C/N ratios of 5, 60, and 20, respectively) to evaluate the production (specific growth rate, protein and biomass yield, production cost) as well as the nutritional characteristics (protein and carbohydrate content, amino acid [AA] profile) of MP production from bioethanol. Under C-limiting conditions, all the selected microorganisms showed a favorable AA profile for human nutrition (average AA score of 1.5 or higher), with a negative correlation between protein content and growth rate. Maximal biomass yields were achieved under conditions where no extracellular acetate was produced. Cyberlindnera saturnus and Wickerhamomyces anomalus displayed remarkably high biomass yields (0.40 to 0.82 g cell dry weight [CDW]/g EtOHconsumed), which was reflected in the lowest estimated biomass production costs when cultivated with a C/N ratio of 20. Finally, when the production cost was evaluated on a protein basis, Corynebacterium glutamicum grown under C-limiting conditions showed the most promising economic outlook. IMPORTANCE The global protein demand is rapidly increasing at rates that cannot be sustained, with projections showing 78% increased global protein needs by 2050 (361 compared to 202 million tonprotein/year in 2017). In the absence of dedicated mitigation strategies, the environmental effects of our current food production system (relying on agriculture) are expected to surpass the planetary boundaries-the safe operating space for humanity-by 2050. Here, we illustrate the potential of bioethanol-renewable ethanol produced from side streams-as a main resource for the production of microbial protein, a radically different food production strategy in comparison to traditional agriculture, with the potential to be more sustainable. This study unravels the kinetic, productive, and nutritional potential for microbial protein production from bioethanol using the bacteria Methylorubrum extorquens and Corynebacterium glutamicum and the yeasts Wickerhamomyces anomalus, Cyberlindnera saturnus, and Metschnikowia pulcherrima, setting the scene for microbial protein production from renewable ethanol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。