Role of L-Type Voltage-Gated Calcium Channels in Epileptiform Activity of Neurons

L型电压门控钙通道在神经元癫痫样活动中的作用

阅读:5
作者:Denis P Laryushkin, Sergei A Maiorov, Valery P Zinchenko, Sergei G Gaidin, Artem M Kosenkov

Abstract

Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 μM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1-10 μM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。