Fabrication and characterization of super-hydrophilic poly (ε-caprolactone)/hydroxypropyl methylcellulose (HPMC) based composite electrospun membranes for tissue engineering applications

用于组织工程应用的超亲水聚(ε-己内酯)/羟丙基甲基纤维素 (HPMC) 基复合电纺膜的制备和表征

阅读:6
作者:B Sowmya, P K Panda

Abstract

Tissue engineering (TE) employs scaffolds as a structural support for initially seeding of cells followed by development of new tissues. Electrospun scaffolds generally function as a template of native extracellular matrix (ECM). The chemical composition of the scaffold and its surface morphology strongly influence the interaction between various cell types and materials. In this work, PCL and PCL/HPMC-based composite membranes with varying concentrations of HPMC (20-30% by weight) were fabricated using electrospinning technique. The membranes were evaluated for their surface, physio-chemical and biological properties. It was observed probably for the first time that blending of HPMC with PCL produced super-hydrophilic scaffolds. DSC studies confirmed the semi- crystalline nature of HPMC. PCL/HPMC composite scaffolds are found biocompatible from cytotoxicity assay. From the cell culture studies (apoptosis), PCL/HPMC composite scaffolds did not inhibit the adhesion of L929 cells due to their super-hydrophilic nature. The cell adhesion and spreading varied with HPMC concentration. PCL/HPMC (70/30) membranes showed highest cell adhesion among others due to its porous structure.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。