T0901317, an Agonist of Liver X Receptors, Attenuates Neuronal Apoptosis in Early Brain Injury after Subarachnoid Hemorrhage in Rats via Liver X Receptors/Interferon Regulatory Factor/P53 Upregulated Modulator of Apoptosis/Dynamin-1-Like Protein Pathway

T0901317 是一种肝 X 受体激动剂,可通过肝 X 受体/干扰素调节因子/P53 上调凋亡调节剂/动力蛋白-1 样蛋白通路减轻大鼠蛛网膜下腔出血后早期脑损伤中的神经元凋亡

阅读:8
作者:Jiaxing Dai, Shancai Xu, Takeshi Okada, Yu Liu, Gang Zuo, Jiping Tang, John H Zhang, Huaizhang Shi

Conclusion

T0901317 attenuated neuronal apoptosis via LXRs/IRF-1/PUMA/Drp1 pathway in SAH rats.

Methods

Subarachnoid hemorrhage (SAH) models of Sprague-Dawley rats were established with perforation method. T0901317 was injected intraperitoneally 1-hour post-SAH. GSK2033, an inhibitor of LXRs, and interferon regulatory factor (IRF-1) CRISPR activation were injected intracerebroventricularly to evaluate potential signaling pathway. The severity of SAH, neurobehavior test in both short- and long-term and apoptosis was measured with Western blot and immunofluorescence staining.

Results

Expression of LXR-α and IRF-1 increased and peaked at 24 h post-SAH, while LXR-β remained unaffected in SAH+vehicle group compared with Sham group. Post-SAH T0901317 treatment attenuated neuronal impairments in both short- and long-term and decreased neuronal apoptosis, the expression of IRF-1, P53 upregulated modulator of apoptosis (PUMA), dynamin-1-like protein (Drp1), Bcl-2-associated X protein (Bax) and cleaved caspase-3, and increasing B-cell lymphoma 2 (Bcl-2) at 24 h from modeling. GSK2033 inhibited LXRs and reversed T0901317's neuroprotective effects. IRF-1 CRISPR activation upregulated the expression of IRF-1 and abolished the treatment effects of T0901317.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。