Synthesized Nanorods Hydroxyapatite by Microwave-Assisted Technology for In Vitro Osteoporotic Bone Regeneration through Wnt/β-Catenin Pathway

微波辅助技术合成纳米棒羟基磷灰石用于体外骨质疏松骨再生通过Wnt / β-Catenin通路

阅读:7
作者:Nadia Z Shaban, Marwa Y Kenawy, Nahla A Taha, Mona M Abd El-Latif, Doaa A Ghareeb

Abstract

This research presents an optimal and inexpensive, without any additives, method for the synthesis and sintering of hydroxyapatite (HA) by microwave-assisted technology (MAT) furnace. The target sintering temperature of the furnace (1100 ℃) was held for one and two hours for conventional sintering. With regard to the microwave hybrid sintering, it was held at 100%MW for 20 and 30 min. FTIR, XRD, TGA, SEM/EDS, and TEM were assessed to determine HA phase composition, and structural as well as thermal decomposition behavior. The in vitro effects of sintered HA discs on cultured aged mice-isolated osteoblast cells and hydrocortisone-induced osteoclast cells were assessed by measuring ALP, osteocalcin, TRAP, calcium, and Alizarin red S staining. Moreover, their effects on cell differentiation (CD90 and CD 105 and PARR- ɣ) and death markers (GSK3b, MAPK, and β-catenin) were evaluated. The results demonstrate the production of ≈35 nm crystal-sized pure hydroxyapatite nanorod-like particles with a high degree of crystallinity and no impurities as required for biomedical application. HA increased osteogenesis (ALP, osteocalcin, and calcium) markers and decreased cell resorption markers. In addition, HA nanorods reversed the effect of cortisone on cell differentiation and death markers. In conclusion, microwave hybrid sintered HA is a potential nanomaterial for osteoporotic bone regeneration as HA reversed the cortisone adverse effect on osteoblast cell death through canonical and non-canonical pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。