Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells

高通量微流体中的被动微注射用于控制液滴和细胞的驱动

阅读:7
作者:Milad Azarmanesh, Morteza Dejam, Pooya Azizian, Gurkan Yesiloz, Abdulmajeed A Mohamad, Amir Sanati-Nezhad

Abstract

Microinjection is an effective actuation technique used for precise delivery of molecules and cells into droplets or controlled delivery of genes, molecules, proteins, and viruses into single cells. Several microinjection techniques have been developed for actuating droplets and cells. However, they are still time-consuming, have shown limited success, and are not compatible with the needs of high-throughput (HT) serial microinjection. We present a new passive microinjection technique relying on pressure-driven fluid flow and pulsative flow patterns within an HT droplet microfluidic system to produce serial droplets and manage rapid and highly controlled microinjection into droplets. A microneedle is secured within the injection station to confine droplets during the microinjection. The confinement of droplets on the injection station prevents their movement or deformation during the injection process. Three-dimensional (3D) computational analysis is developed and validated to model the dynamics of multiphase flows during the emulsion generation. We investigate the influence of pulsative flows, microneedle parameters and synchronization on the efficacy of microinjection. Finally, the feasibility of implementing our microinjection model is examined experimentally. This technique can be used for tissue engineering, cells actuation and drug discovery as well as developing new strategies for drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。