Zinc binding drives sheet formation by the SAM domain of diacylglycerol kinase δ

锌结合驱动二酰甘油激酶δ的SAM结构域形成片层

阅读:6
作者:Mary Jane Knight, Marisa K Joubert, Megan L Plotkowski, Janette Kropat, Mari Gingery, Fumio Sakane, Sabeeha S Merchant, James U Bowie

Abstract

The diacylglycerol kinase (DGK) family of enzymes plays critical roles in lipid signaling pathways by converting diacylglycerol to phosphatidic acid, thereby downregulating signaling by the former and upregulating signaling by the latter second messenger. Ten DGK family isozymes have been identified to date, which possess different interaction motifs imparting distinct temporal and spatial control of DGK activity to each isozyme. Two DGK family members, δ and η, contain a sterile alpha motif (SAM) domain. The SAM domain of DGKδ1 forms helical polymers that are important for retaining the enzyme in cytoplasmic puncta, thereby inhibiting activity at the plasma membrane until pathway activation. Because zinc was found to be important for stabilizing the similar SAM polymers of the scaffolding protein Shank-3, we investigated the potential role of zinc in DGKδ SAM domain (DGKδSAM) assembly. We find that DGKδSAM binds zinc at multiple sites, driving the organization of the DGKδSAM into large sheets of polymers. Moreover, a mutant DGKδ containing a SAM domain refractory to zinc binding diminishes the formation of cytoplasmic puncta, shows partially impaired regulation of transport to the plasma membrane, and lacks the ability to inhibit the formation of CopII coated vesicles. These results suggest that zinc may play an important role in the assembly and physiology of the DGKδ isozyme.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。