Nucleotide-binding oligomerization domain protein 1 enhances oxygen-glucose deprivation and reperfusion injury in cortical neurons via activation of endoplasmic reticulum stress-mediated autophagy

核苷酸结合寡聚化结构域蛋白 1 通过激活内质网应激介导的自噬增强皮质神经元的氧-葡萄糖剥夺和再灌注损伤

阅读:7
作者:Xiande Ma, Wei Zhang, Chang Xu, Shuangshuang Zhang, Jiaxiu Zhao, Qian Pan, Zhe Wang

Abstract

Cerebral ischemia-reperfusion (CIR) can regulate multiple transcription factors to enhance or attenuate injury. Nucleotide-binding oligomerization domain protein 1 (NOD1) has been reported to be involved in autophagy and endoplasmic reticulum (ER) stress. Moreover, autophagy and ER stress play important roles in CIR injury. Hence, the function of NOD1 in CIR injury was explored in this study. Primary rat cortical neurons were treated with oxygen-glucose deprivation and reperfusion (OGD/R) in vitro. NOD1 level was measured using immunofluorescence, real-time quantitative PCR and western blotting and its ubiquitination using co-immunoprecipitation. Results showed that OGD/R up-regulated NOD1 level but inhibited NOD1 ubiquitination. Then the effect of NOD1 on OGD/R-induced changes in cell viability, apoptosis, autophagy and ER stress was evaluated by methyl thiazolyl tetrazolium assay, lactate dehydrogenase release, Hoechst staining, detection of autophagy and ER stress-related proteins using western blotting and infection with GFP-LC3 lentiviruses. OGD/R decreased cell viability and increased cell apoptosis. NOD1 up-regulation promoted these changes, but NOD1 down-regulation reversed these changes. Moreover, OGD/R triggered autophagy and ER stress and NOD1 silencing reversed OGD/R-induced changes in autophagy and ER stress. To validate the role of autophagy in OGD/R injury, autophagy inducer rapamycin was used. Rapamycin promoted OGD/R-induced decrease in cell viability and counteracted NOD1 silencing-induced increase in cell viability. In addition, ER stress inducer tunicamycin was used to investigate the relationship between ER stress and autophagy. Tunicamycin promoted OGD/R-induced decrease in cell viability and reversed NOD1 silencing-induced increase in cell viability. Tunicamycin also enhanced OGD/R-induced autophagy and reversed NOD1 silencing-induced inhibition in autophagy. The results indicated that NOD1 promoted OGD/R injury in cortical neurons through activating ER stress-mediated autophagy. This study provides new insights for the target of CIR injury treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。