MCT2 overexpression rescues metabolic vulnerability and protects retinal ganglion cells in two models of glaucoma

MCT2 过表达可挽救两种青光眼模型中的代谢脆弱性并保护视网膜神经节细胞

阅读:3
作者:Mohammad Harun-Or-Rashid, Nathaniel Pappenhagen, Ryan Zubricky, Lucy Coughlin, Assraa Hassan Jassim, Denise M Inman

Abstract

Improving cellular access to energy substrates is one strategy to overcome observed declines in energy production and utilization in the aged and pathologic central nervous system. Monocarboxylate transporters (MCTs), the movers of lactate, pyruvate, and ketone bodies into or out of a cell, are significantly decreased in the DBA/2 J mouse model of glaucoma. In order to confirm MCT decreases are disease-associated, we decreased MCT2 in the retinas of MCT2fl/+ mice using an injection of AAV2-cre, observing significant decline in ATP production and visual evoked potential. Restoring MCT2 levels in retinal ganglion cells (RGCs) via intraocular injection of AAV2-GFP-MCT2 in two models of glaucoma, the DBA/2 J (D2), and a magnetic bead model of ocular hypertension (OHT), preserved RGCs and their function. Viral-mediated overexpression of MCT2 increased RGC density and axon number, reduced energy imbalance, and increased mitochondrial function as measured by cytochrome c oxidase and succinate dehydrogenase activity in both models of glaucoma. Ocular hypertensive mice injected with AAV2:MCT2 had significantly greater P1 amplitude as measured by pattern electroretinogram than mice with OHT alone. These findings indicate overexpression of MCT2 improves energy homeostasis in the glaucomatous visual system, suggesting that expanding energy input options for cells is a viable option to combat neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。