PDA modification and properties of α-AlH3

α-AlH3的PDA改性及性能

阅读:3
作者:Mingna Qin, Bingjie Yao, Qiang Shi, Wang Tang, Shaoli Chen, Tao Guo, Wei Wang, Yan Zhang, Zhongxue Ge

Abstract

We present a novel surface coating to resolve the stability of α-AlH3. Inspired by the strong chemical adhesion of mussels, the polymerization of dopamine was first introduced to coat α-AlH3 through simple situ polymerization. The α-AlH3 was used as a substrate. In-depth characterizations confirmed the formation of polydopamine (PDA) on the α-AlH3 surface. The coated α-AlH3 sample was characterized by X-ray diffraction X-ray photoelectron spectrometry and Scanning Electron Microscope. The results show that a strong PDA film is formed on the surface of α-AlH3, and PDA@α-AlH3 retains its primary morphology. The crystal form of α-AlH3 does not change after coating with PDA. The XPS analysis results show that N1 s appears on the material after coating with PDA, indicating that polydopamine is formed on the surface of α-AlH3. The moisture absorption tests show that the moisture absorption rate of α-AlH3 is greatly reduced after being coated with PDA. The excellent intact ability of PDA prevents α-AlH3 from reacting with water in air. The thermal stability of α-AlH3 before and after coating was analyzed by DSC. This work demonstrates the successful applications of dopamine chemistry to α-AlH3, thereby providing a potential method for metastable materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。