Regulatable Complement Inhibition of the Alternative Pathway Mitigates Wet Age-Related Macular Degeneration Pathology in a Mouse Model

可调节的补体抑制替代途径可减轻小鼠模型中的湿性年龄相关性黄斑变性病理

阅读:7
作者:Nathaniel B Parsons, Balasubramaniam Annamalai, Bärbel Rohrer

Conclusions

We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational relevance: The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.

Methods

Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts.

Purpose

Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy.

Results

Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions: We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational relevance: The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。