Dystrophic Dmdmdx rats show early neuronal changes (increased S100β and Tau5) at 8 months, supporting severe dystropathology in this rodent model of Duchenne muscular dystrophy

营养不良型 Dmdmdx 大鼠在 8 个月时出现早期神经元变化(S100β 和 Tau5 增加),支持杜氏肌营养不良症啮齿动物模型中存在严重的营养不良病理学

阅读:5
作者:Vidya S Krishnan, Lakshana P Thanigaiarasu, Robert White, Rachael Crew, Thibaut Larcher, Caroline Le Guiner, Miranda D Grounds

Abstract

The intrinsic necrosis of skeletal muscles in animal models of Duchenne muscular dystrophy (DMD) damages neuromuscular junctions (NMJs) with progressively altered NMJs associated with denervation and premature changes in dystrophic nerves. In the mdx mouse model of DMD, the proteins S100β and Tau5 are significantly increased in sciatic nerves by 13 months (M) of age, far earlier (by 9 M) than in normal wildtype (WT) nerves. Since dystrophic Dmdmdx rats are reported to have a more severe dystropathology than mdx mice, we hypothesised that Dmdmdx rat nerves would show earlier neuronal changes compared with mdx nerves. We quantified levels of 8 proteins (by immunoblotting) in sciatic and radial nerves from young adult Dmdmdx rats (aged 8 M) and mdx mice (9 M), plus levels of 7 mRNAs (by qPCR) in rat nerves only. Sciatic nerves of 8 M Dmdmdx rats had more consistently increased levels of S100β and Tau5 proteins, compared with 9 M mdx mice, supporting pronounced dystropathology in the rat model. There were no differences for mRNA levels, apart from higher gelsolin mRNA in Dmdmdx sciatic nerves. The pronounced protein changes in Dmdmdx nerves indicate a severe ongoing myonecrosis, and likely consequent myofibre denervation, for the dystrophic rat model. These data support increased neuronal proteins in dystrophic nerves as a novel pre-clinical readout of ongoing myonecrosis for DMD research. In older DMD boys, such progressive neuronal changes over many years are likely to contribute to loss of muscle function, and may complicate evaluation of late-onset clinical therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。