INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction

INK4a 基因敲除小鼠在正常情况下以及单侧输尿管阻塞时纤维化增加

阅读:6
作者:Jesse M Wolstein, David H Lee, Jennine Michaud, Venessa Buot, Beth Stefanchik, Matthew D Plotkin

Abstract

The INK4a proteins p16(INK4a) and p19(ARF) regulate cell cycle arrest and senescence. However, the role of these proteins in controlling these processes in the normal kidney and following injury is unknown. We performed unilateral ureteral obstruction (UUO) to induce fibrosis in 2- to 3-mo-old wild-type (WT) C57/B6 and INK4a knockout mice. By quantitative RT-PCR, p16(INK4a) levels were increased sixfold in WT mice 7 days after UUO and p19(ARF) remained undetectable. Kidney sections were examined to determine levels and localization of p16(INK4a), apoptosis, fibrosis, and senescent cells. INK4a knockout mice displayed mesangial cell proliferation, increased matrix deposition, and myofibroblast differentiation under normal conditions. Following UUO, INK4a knockout mice displayed 10-fold increased tubular and interstitial cell proliferation, 75% decreased collecting duct apoptosis, 2-fold greater collagen and fibronectin deposition, and no cell senescence by senescence-associated β-galactosidase staining compared with WT mice. Both INK4a knockout mesangial cells and kidney lysates from knockout mice following injury showed elevated levels of IL-6 by ELISA compared with WT samples. INK4a knockout epithelial cell cultures displayed increased mesenchymal cell markers when exposed to transforming growth factor-β. These results confirm that p16(INK4a) controls cell proliferation and matrix production and mitigates fibrosis following injury and suggest that the mechanism involves a role in limiting inflammation and cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。