Topically applicated curcumin/gelatin-blended nanofibrous mat inhibits pancreatic adenocarcinoma by increasing ROS production and endoplasmic reticulum stress mediated apoptosis

局部应用姜黄素/明胶混合纳米纤维垫通过增加 ROS 生成和内质网应激介导的细胞凋亡来抑制胰腺腺癌

阅读:6
作者:Tao Cheng, Zhiheng Zhang, Hua Shen, Ziying Jian, Junsheng Li, Yujun Chen, Yi Shen, Xinyi Dai

Background

Pancreatic adenocarcinoma (PDAC) is one of the most fatal malignancies. Surgical resection supplemented by chemotherapy remains the major therapeutic regimen, but with unavoidable resistance and systemic toxic reaction. Curcumin is a known safe natural compound that can effectively eliminate pancreatic adenocarcinoma cells in vitro, making it a promising candidate for substitution in subsequent chemotherapy. However, due to its extremely low bioavailability caused by its insolubility and circular elimination, curcumin had an unexpectedly modest therapeutic effect in clinical trials.

Conclusions

Clinically, curcumin/gelatin-blended nanofibrous mat could be a promising, secure, efficient and affordable substitutional agent for the elimination of residual cancer cells after tumor resection. Moreover, our strategy to obtain curcumin released from nanofibrous mat may provide a universally applicable approach for the study of the therapeutic effects and molecular mechanisms of other potential medicines with low bioavailability.

Results

Here, we electrospun curcumin/gelatin-blended nanofibrous mat to largely improve curcumin's bioavailability by local controlled-release. With characterization by scanning electron microscopy, fluorescence microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and high-performance liquid chromatography, it was revealed that curcumin was uniformly dispersed in the fiber of the mats with nanoscopic dimensions and could be continuously released into the surrounding medium for days. The cancer inhibitory effects of nano-curcumin and underlying mechanisms were further explored by assays using pancreatic adenocarcinoma cell and experiments using xenograft model. The results showed the released nano-curcumin could effectively inhibit pancreatic adenocarcinoma cell proliferation not only in vitro, but more importantly in vivo. This cytotoxic effect of nano-curcumin against pancreatic adenocarcinoma was achieved through provoking the production of intracellular reactive oxygen species and activating endoplasmic reticulum stress, which leads to enhanced cell apoptosis via decreased phosphorylation of signal transducer and activator of transcription 3. Conclusions: Clinically, curcumin/gelatin-blended nanofibrous mat could be a promising, secure, efficient and affordable substitutional agent for the elimination of residual cancer cells after tumor resection. Moreover, our strategy to obtain curcumin released from nanofibrous mat may provide a universally applicable approach for the study of the therapeutic effects and molecular mechanisms of other potential medicines with low bioavailability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。