Autophagosome formation is required for cardioprotection by chloramphenicol

自噬体形成是氯霉素保护心脏的必要条件

阅读:7
作者:Zoltán Giricz, Zoltán V Varga, Gábor Koncsos, Csilla Terézia Nagy, Anikó Görbe, Robert M Mentzer Jr, Roberta A Gottlieb, Péter Ferdinandy

Aims

Chloramphenicol (CAP), a broad spectrum antibiotic, was shown to protect the heart against ischemia/reperfusion (I/R) injury. CAP also induces autophagy, however, it is not known whether CAP-induced cardioprotection is mediated by autophagy. Therefore, here we aimed to assess whether activation of autophagy is required for the infarct size limiting effect of CAP and to identify which component of CAP-induced autophagy contributes to cardioprotection against I/R injury. Main

Conclusion

This is the first demonstration that autophagosome formation but not autophagosomal clearance is required for CAP-induced cardioprotection. Significance: Inducing autophagy sequestration might yield novel therapeutic options against acute ischemia/reperfusion injury.

Methods

Hearts of Sprague-Dawley rats were perfused in Langendorff mode with Krebs-Henseleit solution containing either vehicle (CON), 300μM CAP (CAP), CAP and an inhibitor of autophagosome-lysosome fusion chloroquine (CAP+CQ), or an inhibitor of autophagosome formation, the functional null mutant TAT-HA-Atg5K130R protein (CAP+K130R), and K130R or CQ alone, respectively. After 35min of aerobic perfusion, hearts were subjected to 30min global ischemia and 2h reperfusion. Autophagy was determined by immunoblot against LC3 from left atrial tissue. Infarct size was measured by TTC staining, coronary flow was measured, and the release of creatine kinase (CK) was assessed from the coronary effluent. Key findings: CAP treatment induced autophagy, increased phosphorylation of Erk1/2 in the myocardium and significantly reduced infarct size and CK release. Autophagy inhibitor TAT-HA-Atg5K130R abolished cardioprotection by CAP, while in CAP+CQ hearts infarct size and CK release were reduced similarly to as seen in the CAP-treated group.

Significance

Inducing autophagy sequestration might yield novel therapeutic options against acute ischemia/reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。