CAPS2 deficiency induces proopiomelanocortin accumulation in pituitary and affects food intake behavior in mice

CAPS2 缺乏会诱导垂体中阿片黑素原积累并影响小鼠的食物摄入行为

阅读:4
作者:Shuhei Fujima, Natsuki Amemiya, Tomoki Arima, Yoshitake Sano, Teiichi Furuichi

Abstract

Proopiomelanocortin (POMC) is a neuropeptide precursor produced in the anterior and intermediate pituitary lobes, the hypothalamic arcuate nucleus (ARC), and solitary tract nucleus. Alpha-melanocyte-stimulating hormone (α-MSH) is a cell type specific POMC derivative that is essential for regulating feeding, and energy homeostasis. However, the molecular mechanism underlying POMC/α-MSH secretion remains unclear. Ca2+-dependent activator protein for secretion 2 (CAPS2) is a regulatory protein involved in the exocytosis of dense-core vesicles containing neuropeptides. We previously reported CAPS2 localization in the intermediate pituitary lobe and reduced body weights in Caps2-knockout (Caps2-KO) mice, compared to control mice. Here, we aimed to investigate CAPS2 expression in POMC-expressing neurons and the effects of CAPS2 deficiency on the secretion of POMC-related peptides and feeding behavior phenotype. CAPS2 was localized in the POMC-expressing neurons of the intermediate pituitary lobe, hypothalamic ARC, and the paraventricular nucleus, which is innervated by hypothalamic neurons. POMC protein levels in the intermediate pituitary lobe of Caps2-KO mice were significantly higher than that in the control mice, suggesting a possible accumulation of POMC-derived peptides in the intermediate pituitary lobe of Caps2-KO mice. Moreover, administration of low-dose melanotan-2, an α-MSH receptor (MC4R) agonist, decreased food intake per body weight in Caps2-KO mice; no such effect was observed in the wildtype mice. Collectively, these results suggest that CAPS2 is involved in regulating the secretion of POMC-derived peptides, including α-MSH, is partially associated with feeding, and affects energy metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。