Catalytic core-shell nanoparticles with self-supplied calcium and H2O2 to enable combinational tumor inhibition

具有自供钙和 H2O2 的催化核壳纳米粒子可实现联合肿瘤抑制

阅读:4
作者:Hanjing Kong #, Chao Fang #, Qiang Chu, Zefeng Hu, Yike Fu, Gaorong Han, Xiang Li, Yi Zhou

Abstract

Nanoparticles, presenting catalytic activity to induce intracellular oxidative species, have been extensively explored for tumor treatment, but suffer daunting challenges in the limited intracellular H2O2 and thus suppressed therapeutic efficacy. Here in this study, a type of composite nanoparticles, consisting CaO2 core and Co-ferrocene shell, is designed and synthesized for combinational tumor treatment. The findings indicate that CaO2 core can be hydrolyzed to produce large amounts of H2O2 and calcium ions at the acidic tumor sites. Meanwhile, Co-ferrocene shell acts as an excellent Fenton catalyst, inducing considerable ROS generation following its reaction with H2O2. Excessive cellular oxidative stress triggers agitated calcium accumulation in addition to the calcium ions released from the particles. The combined effect of intracellular ROS and calcium overload causes significant tumor inhibition both in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。