Lipid-Encapsuled Grape Tannins Prevent Oxidative-Stress-Induced Neuronal Cell Death, Intracellular ROS Accumulation and Inflammation

脂质包裹的葡萄单宁可防止氧化应激诱导的神经细胞死亡、细胞内 ROS 积累和炎症

阅读:5
作者:Hugo S Díaz, Angélica Ríos-Gallardo, Domiziana Ortolani, Esteban Díaz-Jara, María José Flores, Ignacio Vera, Angela Monasterio, Fernando C Ortiz, Natalia Brossard, Fernando Osorio, Rodrigo Del Río

Abstract

The central nervous system (CNS) is particularly vulnerable to oxidative stress and inflammation, which affect neuronal function and survival. Nowadays, there is great interest in the development of antioxidant and anti-inflammatory compounds extracted from natural products, as potential strategies to reduce the oxidative/inflammatory environment within the CNS and then preserve neuronal integrity and brain function. However, an important limitation of natural antioxidant formulations (mainly polyphenols) is their reduced in vivo bioavailability. The biological compatible delivery system containing polyphenols may serve as a novel compound for these antioxidant formulations. Accordingly, in the present study, we used liposomes as carriers for grape tannins, and we tested their ability to prevent neuronal oxidative stress and inflammation. Cultured catecholaminergic neurons (CAD) were used to establish the potential of lipid-encapsulated grape tannins (TLS) to prevent neuronal oxidative stress and inflammation following an oxidative insult. TLS rescued cell survival after H2O2 treatment (59.4 ± 8.8% vs. 90.4 ± 5.6% H2O2 vs. TLS+ H2O2; p < 0.05) and reduced intracellular ROS levels by ~38% (p < 0.05), despite displaying negligible antioxidant activity in solution. Additionally, TLS treatment dramatically reduced proinflammatory cytokines’ mRNA expression after H2O2 treatment (TNF-α: 400.3 ± 1.7 vs. 7.9 ± 1.9-fold; IL-1β: 423.4 ± 1.3 vs. 12.7 ± 2.6-fold; p < 0.05; H2O2 vs. TLS+ H2O2, respectively), without affecting pro/antioxidant biomarker expression, suggesting that liposomes efficiently delivered tannins inside neurons and promoted cell survival. In conclusion, we propose that lipid-encapsulated grape tannins could be an efficient tool to promote antioxidant/inflammatory cell defense.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。