Effect of everolimus on the glucose metabolic pathway in mouse skeletal muscle cells (C2C12)

依维莫司对小鼠骨骼肌细胞(C2C12)葡萄糖代谢途径的影响

阅读:5
作者:Kayoko Yoshida, Chiyo K Imamura, Kanako Hara, Mayumi Mochizuki, Yusuke Tanigawara

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5'-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism. Conclusions: The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。