Microglia Demonstrate Local Mixed Inflammation and a Defined Morphological Shift in an APP/PS1 Mouse Model

小胶质细胞在 APP/PS1 小鼠模型中表现出局部混合炎症和明确的形态转变

阅读:3
作者:Olivia G Holloway, Anna E King, Jenna M Ziebell

Background

Microglia are traditionally described as the immune cells of the brain and have an inflammatory role in Alzheimer's disease (AD). Microglial morphological and phenotypic shifts in AD have not been fully characterized; however, microglia are often described as either pro- or anti-inflammatory.

Conclusion

Our data indicate that pro- and anti-inflammatory factors of microglia occur in APP/PS1 mice.

Methods

This study observed morphology through Iba1 immunohistochemistry on tissue sections encompassing the primary motor cortex and somatosensory barrel fields. Immunohistochemistry for pro-inflammatory markers: CD14 and CD40; and anti-inflammatory markers: CD16 and TREM2, was performed at 3, 6, and 12 months of age which correlated with pre-plaque, onset, and significant plaque load in APP/PS1 brains (n = 6) and compared to age-matched littermate controls (n = 6).

Objective

To determine microglial if microglial morphology and phenotype changes with disease status.

Results

Microglia demonstrated a defined morphological shift with time. Deramified morphologies increased in the APP/PS1, at both 6 months (p < 0.0001) and 12 months (p < 0.0001). At 12 months, there were significantly lower numbers of ramified microglia (p < 0.001). Results indicated that microglia have a heterogenic marker immunoreactivity as CD16, TREM2, and CD40 were associated with an activated morphology at the same time points. All inflammatory markers were significantly upregulated at 12 months in the APP/PS1 mice (TREM2 (F (2,30) = 10.75, p = 0.0003), CD40 (F (2,30) = 15.86, p < 0.0001), CD14 (F (2,30) = 6.84, p = 0.0036), and CD16 (F (2,30) = 3.026, p = 0.0635)).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。