Redox Regulation of the Mitochondrial Quality Control Protease Oma1

线粒体质量控制蛋白酶Oma1的氧化还原调控

阅读:5
作者:Iryna Bohovych, Jonathan V Dietz, Samantha Swenson, Nataliya Zahayko, Oleh Khalimonchuk

Aims

Normal mitochondrial function and integrity are crucial for cellular physiology. Given the paramount role of mitochondrial quality control proteases in these processes, our study focused on investigating mechanisms by which the activity of a key quality control protease Oma1 is regulated under normal conditions and in response to homeostatic insults.

Conclusion

Disulfide bonds formed by IMS-exposed residues Cys272 and Cys332 play an important evolutionarily conserved role in the regulation of Oma1 function. We propose that the redox status of these cysteines may act as a redox-tunable switch to optimize Oma1 proteolytic function for specific cellular conditions or homeostatic challenges.

Results

Oma1 was found to be a redox-dependent protein that exists in a semi-oxidized state in yeast and mammalian mitochondria. Biochemical and genetic analyses provide evidence that activity and stability of the Oma1 oligomeric complex can be dynamically tuned in a reduction/oxidation-sensitive manner. Mechanistically, these features appear to be mediated by two intermembrane space (IMS)-exposed highly conserved cysteine residues, Cys272 and Cys332. These residues form a disulfide bond, which likely plays a structural role and influences conformational stability and activity of the Oma1 high-mass complex. Finally, in line with these findings, engineered Oma1 substrate is shown to engage with the protease in a redox-sensitive manner. Innovation: This study provides new insights into the function of the Oma1 protease, a central controller of mitochondrial membrane homeostasis and dynamics, and reveals the novel conserved mechanism of the redox-dependent regulation of Oma1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。