Predicting Progression of Autosomal Dominant Polycystic Kidney Disease by Changes in the Telomeric Epigenome

通过端粒表观基因组的变化预测常染色体显性多囊肾病的进展

阅读:5
作者:Ismail Kocyigit, Serpil Taheri, Cihan Uysal, Mehmet Memis, Salih Guntug Ozayturk, Gokmen Zararsiz, Minoo Rassoulzadegan

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease with Polycystin (PKD) 1 and 2 gene mutation. However, the intra-familial variability in symptoms further suggests a non-Mendelian contribution to the disease. Our goal was to find a marker to track the epigenetic changes common to rapidly progressing forms of the disease. The risk of ADPKD increases with age, and aging shortens the telomere length (TL). Telomeres are a nucleoprotein structure composed mainly of three complexes, shelterin, CST and RNA-containing telomere repeat(TERRA), which protects the ends of chromosomes from degradation and fusion, and plays a role in maintaining cellular stability and in the repair of telomeric damage. TERRAs are transcribed from telomeric regions and a part of them is engaged in a DNA/RNA hybrid (R-loop) at each chromosome end. We tracked TL and TERRA levels in blood samples of 78 patients and 20 healthy control. Our study demonstrates that TL was shortened and TERRA expression levels in the DNA-attached fraction increased in autosomal dominant polycystic kidney patients with mutations in PKD1 and PKD2 compared to the control group. Moreover, it was observed that the expression of TERRA engaged in the R-loop was higher and the length of telomeres shorter in patients with ADPKD who showed rapid disease progression. Intrafamilial variation in TL and TERRA levels with the same mutation would indicate reliable epigenetic potential biomarkers in disease monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。