Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs)

组蛋白去乙酰化酶抑制剂 (HDACi) 导致含溴结构域蛋白 (BCP) 的选择性消耗

阅读:5
作者:Marie-Therese Mackmull, Murat Iskar, Luca Parca, Stephan Singer, Peer Bork, Alessandro Ori, Martin Beck

Abstract

Histone deacetylases (HDACs) and acetyltransferases control the epigenetic regulation of gene expression through modification of histone marks. Histone deacetylase inhibitors (HDACi) are small molecules that interfere with histone tail modification, thus altering chromatin structure and epigenetically controlled pathways. They promote apoptosis in proliferating cells and are promising anticancer drugs. While some HDACi have already been approved for therapy and others are in different phases of clinical trials, the exact mechanism of action of this drug class remains elusive. Previous studies have shown that HDACis cause massive changes in chromatin structure but only moderate changes in gene expression. To what extent these changes manifest at the protein level has never been investigated on a proteome-wide scale. Here, we have studied HDACi-treated cells by large-scale mass spectrometry based proteomics. We show that HDACi treatment affects primarily the nuclear proteome and induces a selective decrease of bromodomain-containing proteins (BCPs), the main readers of acetylated histone marks. By combining time-resolved proteome and transcriptome profiling, we show that BCPs are affected at the protein level as early as 12 h after HDACi treatment and that their abundance is regulated by a combination of transcriptional and post-transcriptional mechanisms. Using gene silencing, we demonstrate that the decreased abundance of BCPs is sufficient to mediate important transcriptional changes induced by HDACi. Our data reveal a new aspect of the mechanism of action of HDACi that is mediated by an interplay between histone acetylation and the abundance of BCPs. Data are available via ProteomeXchange with identifier PXD001660 and NCBI Gene Expression Omnibus with identifier GSE64689.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。