N-myristoylation regulates insulin-induced phosphorylation and ubiquitination of Caveolin-2 for insulin signaling

N-肉豆蔻酰化调节胰岛素诱导的 Caveolin-2 磷酸化和泛素化,从而实现胰岛素信号传导

阅读:5
作者:Hayeong Kwon, Moonjeong Choi, Yujin Ahn, Yunbae Pak

Abstract

N-myristoylation is a ubiquitous protein lipidation in eukaryotes, but regulatory roles for myristoylation on proteins still remain to be explored. Here, we show that N-myristoylation of Caveolin-2 (Cav-2) controls insulin signaling. Alternative translation initiation (ATI)-yielded truncated form of non-N-myristoylable Cav-2β and various conditional Cav-2 mutants were compared to full-length form of N-myristoylable Cav-2α. Insulin induced insulin receptor (IR) tyrosine kinase-catalyzed Tyr-19 phosphorylation of N-myristoylable M14A Cav-2 and triggered activation of IR signaling cascade. In contrast, insulin induced ubiquitination of non-N-myristoylable M1A and G2A Cav-2 to facilitate protein-tyrosine phosphatase 1B interaction with IR which desensitized IR signaling through internalization. Metabolic labeling and click chemistry showed palmitoylation of M14A but not M1A and G2A Cav-2. Insulin did not induce phosphorylation of M1A and G2A Cav-2 and Cav-2β. Like Cav-2α, G2A Cav-2 and Cav-2β formed large homo-oligomers localized in lipid rafts. These findings show Cav-2 N-myristoylation plays a crucial role to coordinate its phosphorylation, palmitoylation, and ubiquitination to control insulin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。