ß-Catenin is markedly induced in a murine model of an arteriovenous fistula: the effect of metalloproteinase inhibition

β-Catenin 在小鼠动静脉瘘模型中明显诱导:金属蛋白酶抑制的作用

阅读:7
作者:Karl A Nath, Joseph P Grande, Lu Kang, Julio P Juncos, Allan W Ackerman, Anthony J Croatt, Zvonimir S Katusic

Abstract

Neointimal hyperplasia contributes to failure of hemodialysis arteriovenous fistulas (AVFs). Increased expression of matrix metalloproteinase (MMP)-9 occurs in AVFs, and MMP-9 is implicated in neointimal hyperplasia and vascular injury. Recent studies demonstrate that MMP-9, by degrading N-cadherin, leads to increased expression of β-catenin and β-catenin-dependent proliferation of smooth muscle cells. The present study examined this pathway in the venous limb of a murine AVF model. Western analyses demonstrate that, in this model, there is diminished expression of N-cadherin accompanied by increased expression of β-catenin, c-Myc, and proliferating cell nuclear antigen (PCNA). By immunohistochemistry, β-catenin and c-Myc localized to proliferating smooth muscle cells in the venous limb of the AVF. Increased expression of β-catenin was accompanied by augmented expression of phosphorylated (p)-glycogen synthase kinase (GSK)-3β, GSK-3β, and integrin-linked kinase. The administration of doxycycline suppressed MMP-9 expression but did not reduce venous histological injury in the AVF, or increase AVF patency assessed 6 wk after its creation. Doxycycline did not influence expression of β-catenin, c-Myc, GSK-3β, or integrin-linked kinase. Thus, in this vascular injury model, the upregulation of β-catenin cannot be readily attributed to MMP-9 upregulation; increased β-catenin expression may reflect either the upregulation of p-GSK-3β, GSK-3β, or integrin-linked kinase. This study provides the first exploration of β-catenin in an AVF, demonstrating substantial upregulation of this mitogenic signaling molecule and uncovering possible mechanisms that may account for such upregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。