NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer

NKX2-8 缺失诱导的脂肪酸代谢重编程导致上皮性卵巢癌产生化疗耐药性

阅读:6
作者:Jinrong Zhu, Geyan Wu, Libing Song, Lixue Cao, Zhanyao Tan, Miaoling Tang, Ziwen Li, Dongni Shi, Shuxia Zhang, Jun Li

Background

Aberrant fatty acid (FA) metabolism is a unique vulnerability of cancer cells and may present a promising target for cancer therapy. Our study aims to elucidate the molecular mechanisms by which NKX2-8 deletion reprogrammed FA metabolism-induced chemoresistance in epithelial ovarian cancer (EOC).

Methods

The deletion frequency and expression of NKX2-8 in 144 EOC specimens were assayed using Fluorescence in situ hybridization and immunochemical assays. The effects of NKX2-8 deletion and the fatty acid oxidation (FAO) antagonist Perhexiline on chemoresistance were examined by Annexin V and colony formation in vitro, and via an intraperitoneal tumor model in vivo. The mechanisms of NKX2-8 deletion in reprogrammed FA metabolism was determined using Chip-seq, metabolomic analysis, FAO assays and immunoprecipitation assays. Findings: NKX2-8 deletion was correlated with the overall and relapse-free survival of EOC patients. NKX2-8 inhibited the FAO pathway by epigenetically suppressing multiple key components of the FAO cascade, including CPT1A and CPT2. Loss of NKX2-8 resulted in reprogramming of FA metabolism of EOC cells in an adipose microenvironment and leading to platinum resistance. Importantly, pharmacological inhibition of FAO pathway using Perhexiline significantly counteracted NKX2-8 deletion-induced chemoresistance and enhanced platinum's therapeutic efficacy in EOC. Interpretation: Our

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。