Fidgetin-Like 2: A Microtubule-Based Regulator of Wound Healing

Fidgetin-Like 2:基于微管的伤口愈合调节剂

阅读:7
作者:Rabab A Charafeddine, Joy Makdisi, David Schairer, Brian P O'Rourke, Juan D Diaz-Valencia, Jason Chouake, Allison Kutner, Aimee Krausz, Brandon Adler, Parimala Nacharaju, Hongying Liang, Suranjana Mukherjee, Joel M Friedman, Adam Friedman, Joshua D Nosanchuk, David J Sharp

Abstract

Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated small interfering RNA (siRNA) to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than twofold increase in the rate of cell movement, in part due to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。