Association between Dysfunction of the Nucleolar Stress Response and Multidrug Resistance in Pediatric Acute Lymphoblastic Leukemia

儿童急性淋巴细胞白血病核仁应激反应功能障碍与多药耐药性的关系

阅读:6
作者:Shunsuke Nakagawa, Kohichi Kawahara, Yasuhiro Okamoto, Yuichi Kodama, Takuro Nishikawa, Yoshifumi Kawano, Tatsuhiko Furukawa

Abstract

Approximately 20% of pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) relapse or are refractory to chemotherapy despite the low frequency of TP53 mutations. The nucleolar stress response is a P53-activating mechanism via MDM2 inhibition by ribosomal protein L11 (RPL11). We analyzed the role of the nucleolar stress response using BCP-ALL cell lines and patient samples by drug sensitivity tests, Western blotting, and reverse transcription polymerase chain reaction. We revealed that the nucleolar stress response works properly in TP53 wild-type human BCP-ALL cell lines. Next, we found that 6-mercaptopurine, methotrexate, daunorubicin, and cytarabine had anti-leukemic effects via the nucleolar stress response within BCP-ALL treatment. Comparing the samples at onset and relapse in children with BCP-ALL, RPL11 mRNA expression decreased at relapse in seven of nine cases. Furthermore, leukemia cells with relapse acquired resistance to these four drugs and suppressed P53 and RPL11 expression. Our findings suggest that the nucleolar stress response is a novel anti-leukemia mechanism in BCP-ALL. As these four drugs are key therapeutics for BCP-ALL treatment, dysfunction of the nucleolar stress response may be related to clinical relapse or refractoriness. Nucleolar stress response may be a target to predict and improve the chemotherapy effect for pediatric BCP-ALL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。