Differential effects of putative N-glycosylation sites in human Tau on Alzheimer's disease-related neurodegeneration

人类 Tau 中假定的 N-糖基化位点对阿尔茨海默病相关神经退行性疾病的不同影响

阅读:8
作者:Yelena Losev, Moran Frenkel-Pinter #, Malak Abu-Hussien, Guru Krishnakumar Viswanathan, Donna Elyashiv-Revivo, Rana Geries, Isam Khalaila, Ehud Gazit, Daniel Segal

Abstract

Amyloid assemblies of Tau are associated with Alzheimer's disease (AD). In AD Tau undergoes several abnormal post-translational modifications, including hyperphosphorylation and glycosylation, which impact disease progression. N-glycosylated Tau was reported to be found in AD brain tissues but not in healthy counterparts. This is surprising since Tau is a cytosolic protein whereas N-glycosylation occurs in the ER-Golgi. Previous in vitro studies indicated that N-glycosylation of Tau facilitated its phosphorylation and contributed to maintenance of its Paired Helical Filament structure. However, the specific Tau residue(s) that undergo N-glycosylation and their effect on Tau-engendered pathology are unknown. High-performance liquid chromatography and mass spectrometry (LC-MS) analysis indicated that both N359 and N410 were N-glycosylated in wild-type (WT) human Tau (hTau) expressed in human SH-SY5Y cells. Asparagine to glutamine mutants, which cannot undergo N-glycosylation, at each of three putative N-glycosylation sites in hTau (N167Q, N359Q, and N410Q) were generated and expressed in SH-SY5Y cells and in transgenic Drosophila. The mutants modulated the levels of hTau phosphorylation in a site-dependent manner in both cell and fly models. Additionally, N359Q ameliorated, whereas N410Q exacerbated various aspects of hTau-engendered neurodegeneration in transgenic flies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。