Epigenetic and transcriptional regulation of the human angiotensinogen gene by high salt

高盐对人类血管紧张素原基因的表观遗传和转录调控

阅读:9
作者:Sravan Perla, Ashok Kumar

Abstract

Hypertension is caused by a combination of genetic and environmental factors. Angiotensinogen (AGT) is a component of RAAS, that regulates blood pressure. The human angiotensinogen (hAGT) gene has -6A/-6G polymorphism and -6A variant is associated with human hypertension. In this study, we have investigated the epigenetic regulation of the hAGT. To understand transcriptional regulation of the hAGT, we have made transgenic animals containing -6A. We show that HS affects DNA methylation and modulates transcriptional regulation of this gene in liver and kidney. High salt (HS) increases hAGT gene expression in -6A TG mice. We have observed that the number of CpG sites in the hAGT promoter is decreased after HS treatment. In the liver, seven CpG sites are methylated whereas after HS treatment, only three CpG sites remain methylated. In the kidney, five CpG sites are methylated, whereas after HS treatment, only three CpG sites remain methylated. These results suggest that HS promotes DNA demethylation and increasing AGT gene expression. RT-PCR and immunoblot analysis show that hAGT gene expression is increased by HS. Chip assay has shown that transcription factors bind strongly after HS treatment. RNA-Seq identified differentially expressed genes, novel target genes associated with hypertension, top canonical pathways, upstream regulators. One of the plausible mechanisms for HS induced up-regulation of the hAGT gene is through IL-6/JAK/STAT3/AGT axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。