Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation

睡眠期间接触声音会损害海马尖波涟漪和记忆巩固

阅读:6
作者:Karla Salgado-Puga, Gideon Rothschild

Abstract

Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。