Phosphoproteomic Analysis Defines BABAM1 as mTORC2 Downstream Effector Promoting DNA Damage Response in Glioblastoma Cells

磷酸化蛋白质组学分析将 BABAM1 定义为 mTORC2 下游效应物,促进胶质母细胞瘤细胞中的 DNA 损伤反应

阅读:5
作者:Nuttiya Kalpongnukul, Rungnapa Bootsri, Piriya Wongkongkathep, Pornchai Kaewsapsak, Chaiyaboot Ariyachet, Trairak Pisitkun, Naphat Chantaravisoot

Abstract

Glioblastoma (GBM) is a devastating primary brain cancer with a poor prognosis. GBM is associated with an abnormal mechanistic target of rapamycin (mTOR) signaling pathway, consisting of two distinct kinase complexes: mTORC1 and mTORC2. The complexes play critical roles in cell proliferation, survival, migration, metabolism, and DNA damage response. This study investigated the aberrant mTORC2 signaling pathway in GBM cells by performing quantitative phosphoproteomic analysis of U87MG cells under different drug treatment conditions. Interestingly, a functional analysis of phosphoproteome revealed that mTORC2 inhibition might be involved in double-strand break (DSB) repair. We further characterized the relationship between mTORC2 and BRISC and BRCA1-A complex member 1 (BABAM1). We demonstrated that pBABAM1 at Ser29 is regulated by mTORC2 to initiate DNA damage response, contributing to DNA repair and cancer cell survival. Accordingly, the inactivation of mTORC2 significantly ablated pBABAM1 (Ser29), reduced DNA repair activities in the nucleus, and promoted apoptosis of the cancer cells. Furthermore, we also recognized that histone H2AX phosphorylation at Ser139 (γH2AX) could be controlled by mTORC2 to repair the DNA. These results provided a better understanding of the mTORC2 function in oncogenic DNA damage response and might lead to specific mTORC2 treatments for brain cancer patients in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。