Limited portability of G-patch domains in regulators of the Prp43 RNA helicase required for pre-mRNA splicing and ribosomal RNA maturation in Saccharomyces cerevisiae

酿酒酵母中前 mRNA 剪接和核糖体 RNA 成熟所需的 Prp43 RNA 解旋酶调节器中 G 补丁结构域的可移植性有限

阅读:6
作者:Daipayan Banerjee, Peter M McDaniel, Brian C Rymond

Abstract

The Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition. Here yeast two-hybrid, domain-swap, and site-directed mutagenesis approaches are used to investigate G-patch domain activity and portability. Our results reveal that the Spp382, Sqs1, and Pxr1 G-patches differ in Prp43 two-hybrid response and in the ability to reconstitute the Spp382 and Pxr1 RNA processing factors. G-patch protein reconstitution did not correlate with the apparent strength of the Prp43 two-hybrid response, suggesting that this domain has function beyond that of a Prp43 tether. Indeed, while critical for Pxr1 activity, the Pxr1 G-patch appears to contribute little to the yeast two-hybrid interaction. Conversely, deletion of the primary Prp43 binding site within Pxr1 (amino acids 102-149) does not impede rRNA processing but affects small nucleolar RNA (snoRNA) biogenesis, resulting in the accumulation of slightly extended forms of select snoRNAs, a phenotype unexpectedly shared by the prp43 loss-of-function mutant. These and related observations reveal differences in how the Spp382, Sqs1, and Pxr1 proteins interact with Prp43 and provide evidence linking G-patch identity with pathway-specific DExD/H-box helicase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。