Pharmacological and Activated Fibroblast Targeting of Gβγ-GRK2 After Myocardial Ischemia Attenuates Heart Failure Progression

心肌缺血后 Gβγ-GRK2 的药理作用和活化成纤维细胞靶向作用可减缓心力衰竭进展

阅读:10
作者:Joshua G Travers, Fadia A Kamal, Iñigo Valiente-Alandi, Michelle L Nieman, Michelle A Sargent, John N Lorenz, Jeffery D Molkentin, Burns C Blaxall

Background

Cardiac fibroblasts are a critical cell population responsible for myocardial extracellular matrix homeostasis. Upon injury or pathological stimulation, these cells transform to an activated myofibroblast state and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation, a hallmark of heart failure (HF), induces pathological signaling through G protein βγ (Gβγ) subunits and their interaction with G protein-coupled receptor kinase 2 (GRK2). Objectives: This study investigated the hypothesis that Gβγ-GRK2 inhibition and/or ablation after myocardial injury would attenuate pathological myofibroblast activation and cardiac remodeling.

Conclusions

These findings suggested consideration of a paradigm shift in the understanding of the therapeutic role of Gβγ-GRK2 inhibition in treating HF and the potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathological myofibroblast activation, interstitial fibrosis, and HF progression.

Methods

The therapeutic potential of small molecule Gβγ-GRK2 inhibition, alone or in combination with activated fibroblast- or myocyte-specific GRK2 ablation-each initiated after myocardial ischemia-reperfusion (I/R) injury-was investigated to evaluate the possible salutary effects on post-I/R fibroblast activation, pathological remodeling, and cardiac dysfunction.

Results

Small molecule Gβγ-GRK2 inhibition initiated 1 week post-injury was cardioprotective in the I/R model of chronic HF, including preservation of cardiac contractility and a reduction in cardiac fibrotic remodeling. Systemic small molecule Gβγ-GRK2 inhibition initiated 1 week post-I/R in cardiomyocyte-restricted GRK2 ablated mice (also post-I/R) still demonstrated significant cardioprotection, which suggested a potential protective role beyond the cardiomyocyte. Inducible ablation of GRK2 in activated fibroblasts (i.e., myofibroblasts) post-I/R injury demonstrated significant functional cardioprotection with reduced myofibroblast transformation and fibrosis. Systemic small molecule Gβγ-GRK2 inhibition initiated 1 week post-I/R provided little to no further protection in mice with ablation of GRK2 in activated fibroblasts alone. Finally, Gβγ-GRK2 inhibition significantly attenuated activation characteristics of failing human cardiac fibroblasts isolated from end-stage HF patients. Conclusions: These findings suggested consideration of a paradigm shift in the understanding of the therapeutic role of Gβγ-GRK2 inhibition in treating HF and the potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathological myofibroblast activation, interstitial fibrosis, and HF progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。