A Genetically Encoded, Ratiometric Fluorescent Biosensor for Hydrogen Sulfide

一种用于检测硫化氢的遗传编码、比率荧光生物传感器

阅读:7
作者:Suzan Youssef, Shen Zhang, Hui-Wang Ai

Abstract

As an important gasotransmitter, hydrogen sulfide (H2S) plays crucial roles in cell signaling. Incorporation of p-azidophenylalanine ( pAzF) into fluorescent proteins (FPs) via genetic code expansion has been a successful strategy in developing intensity-based, genetically encoded fluorescent biosensors for H2S. To extend this strategy for ratiometric measurement which eliminates many detection uncertainties via self-calibration at two wavelengths, we modified the chromophore of a circularly permutated, superfolder green fluorescent protein (cpsGFP) with pAzF to derive cpsGFP- pAzF, which subsequently served as a Förster resonance energy transfer (FRET) acceptor to EBFP2, an enhanced blue fluorescent protein. The resultant construct, namely, hsFRET, is the first ratiometric, genetically encoded fluorescent biosensor for H2S. Both in vitro and in mammalian cells, H2S reduces the azido functional group of hsFRET to amine, leading to an increase of FRET from EBFP2 to cpsGFP. Our results collectively demonstrated that hsFRET could be used to selectively and ratiometrically monitor H2S.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。