Carbon-Supported Mo2C for Oxygen Reduction Reaction Electrocatalysis

碳负载 Mo2C 用于氧还原反应电催化

阅读:8
作者:Dušan Mladenović, Milica Vujković, Slavko Mentus, Diogo M F Santos, Raquel P Rocha, Cesar A C Sequeira, Jose Luis Figueiredo, Biljana Šljukić

Abstract

Molybdenum carbide (Mo2C)-based electrocatalysts were prepared using two different carbon supports, commercial carbon nanotubes (CNTs) and synthesised carbon xerogel (CXG), to be studied from the point of view of both capacitive and electrocatalytic properties. Cation type (K+ or Na+) in the alkaline electrolyte solution did not affect the rate of formation of the electrical double layer at a low scan rate of 10 mV s-1. Conversely, the different mobility of these cations through the electrolyte was found to be crucial for the rate of double-layer formation at higher scan rates. Molybdenum carbide supported on carbon xerogel (Mo2C/CXG) showed ca. 3 times higher double-layer capacity amounting to 75 mF cm-2 compared to molybdenum carbide supported on carbon nanotubes (Mo2C/CNT) with a value of 23 mF cm-2 due to having more than double the surface area size. The electrocatalytic properties of carbon-supported molybdenum carbides for the oxygen reduction reaction in alkaline media were evaluated using linear scan voltammetry with a rotating disk electrode. The studied materials demonstrated good electrocatalytic performance with Mo2C/CXG delivering higher current densities at more positive onset and half-wave potential. The number of electrons exchanged during oxygen reduction reaction (ORR) was calculated to be 3, suggesting a combination of four- and two-electron mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。