S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9

S100A14 通过调节基质金属蛋白酶 MMP1 和 MMP9 的表达来调节口腔鳞状细胞癌细胞系的体外侵袭潜力

阅读:4
作者:Dipak Sapkota, Ove Bruland, Daniela Elena Costea, Hallvard Haugen, Endre N Vasstrand, Salah O Ibrahim

Abstract

Despite the differential expression of S100A14 (a newly identified S100 member) in various human cancers including oral squamous cell carcinomas (OSCCs), its biological role in tumour invasion has not been characterised. The aim of this study was thus to investigate the possible role of S100A14 in OSCC cell invasion. Using immunohistochemistry in normal (n=13), dysplastic (n=10) and OSCC (n=16) archival tissues, S100A14 protein was found to be down-regulated/lost with concomitant membrane to cytoplasmic translocation in OSCCs, especially in the invading tumour islands. These expression data were corroborated by profiling S100A14 mRNA expression using quantitative RT-PCR (qRT-PCR) in an in vitro human OSCC progression model consisting of cell-lines derived from normal (n=3), dysplastic (n=3) and OSCC (n=8) tissues. Employing in vitro Matrigel invasion assay, we demonstrated that retroviral vector mediated over-expression of S100A14 resulted in significant decrease in the invasive potential of OSCC derived CaLH3 and H357 cell-lines whereas siRNA mediated knockdown resulted in significant increase in the invasive potential of CaLH3 cell-line. Pathway focused PCR array and validation using qRT-PCR revealed that S100A14 over-expression was associated with down-regulation of MMP1 and MMP9 mRNAs in both CaLH3 and H357 cell-lines. Further, S100A14 over-expression was found to be associated with suppression of MMP9 gelatinolytic activity in CaLH3 cell-line. Additionally, an inverse correlation between mRNA expression levels of MMP1 and MMP9 with S100A14 was found in 19 cases of OSCCs. Collectively, these data provide the first evidence for a role of S100A14 protein in regulation of OSCC cell invasion by modulating expression of MMP1 and MMP9.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。